חAmIBIA UחIVERSITY
OF SCIEПCE AПD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: O7BOSC	LEVEL: 7
COURSE CODE: OCH701S	COURSE NAME: ORGANIC CHEMISTRY 2
SESSION: JULY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. MARIUS MUTORWA
MODERATOR:	DR. RENATE HANS

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black in and sketches must be done in pencil
5. No book, notes and other additional aids are allowed
A.

B. PERMISSIBLE MATERIALS

Non-programmable Calculators
C. ATTACHMENTS

NMR and IR Spectral Data, pKa Chart and Periodic Table

SECTION A

QUESTION 1: Multiple Choice Questions

- There are 25 multiple choice questions and each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
1.1 Which of the following compounds will show a broad absorption around $3300 \mathrm{~cm}^{-1}$ and at 1650 cm^{-1} ?

I

II

III

IV

v
A. I
B. II
C. III
D. IV
E. V
1.2 Which of the following compounds will have odd m / z value for the molecular ion?

A. 1
B. II
C. III
D. IV
E. None of the above
1.3 Identify the structure for a compound that is consistent with the following data.
a. The molecular ion peak has $m / z=116$
b. The base peak is at $m / z=59$.
c. The compound is composed of C, H and O atoms.
d. The IR spectrum shows a strong absorbance at $3257 \mathrm{~cm}^{-1}$.

A

B

C

D

E.
A. A
B. B
C. C
D. D
E. E
1.4 For the following reaction sequence (it is not necessary to understand the chemistry) what significant change(s) would be expected by IR (ignoring C-H absorptions)?

A. A peak around $1710 \mathrm{~cm}^{-1}$ would disappear and a new peak around $3300-3500 \mathrm{~cm}^{-1}$ would appear.
B. A peak around $1710 \mathrm{~cm}-1$ would appear and a new peak around $1650 \mathrm{~cm}^{-1}$ would disappear.
C. A peak around $2150 \mathrm{~cm}-1$ would disappear and a new peak around $3300-3500 \mathrm{~cm}^{-1}$ would appear.
D. No change would be observed.
1.5 A compound has two signals in the ${ }^{13} \mathrm{C}$ NMR spectrum and a single signal in the ${ }^{1} \mathrm{H}$ NMR spectrum. Which is the most likely compound?
A. dimethyl ether
B. diethyl ether
C. 2,2-dimethylpropane
D. methyl ethanoate
1.6 How many proton NMR singlets will 2-bromo-3-methyl-2-butene exhibit?
A. 1
B. 2
C. 3
D. 4
E. 5
1.7 Which of the indicated protons in the following compound would appear most upfield in the 1 H NMR spectrum?

A. I
B. II
C. III
D. IV
E. I \& IV
1.8 What is the product of the following reaction?

A.

B.

C.
A. A
B. B
C. C
D. None of the above
1.9 Treatment of the diene below gives a mixture of products. Predict the major product under the given conditions.

A

B

C

D
A. A
B. B
C. C
D. D
1.10 Which of the following compound (s) show conjugation?

A.

B.
C.
A. A
B. B
C. C
D. B \& C
E. All of the above
1.11 Why is the following compound not aromatic?

A. It has $4 n$ electrons
B. It isn't planar
C. It has $4 n+2$ electrons and the π electron system in continuous
D. It isn't planar and the π electron system is not continuous
1.12 Name the following compound.

A. 2,3-dibromoaniline
B. 2-bromo-5-aminobromobenzene
C. 2-bromo-3-aminobromobenzene
D. ortho-dibromonitrobenzene
1.13 Which one of the following compound is aromatic?

I

II

III

A. I
B. II
C. III
D. IV
1.14 How many π-orbital electrons are in the following molecule?

A. 4
B. 6
C. 8
D. 10
1.15 Which is the best reaction sequence for preparing the following compound from benzene?

A
B
$\xrightarrow[\mathrm{CH}_{3} \mathrm{Cl}]{\mathrm{AlCl}_{3}} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\stackrel{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{ }}$
C
A. A
B. B
C. C
D. D
1.16 Both LiAlH_{4} and NaBH_{4} are reducing agents. Which statement about these reagents is true?
A. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is greater than the polarity of the AI-H bond, so LiAlH_{4} is the stronger reducing agent.
B. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is greater than the polarity of the Al-H bond, so LiAlH_{4} is the weaker reducing agent.
C. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is less than the polarity of the Al-H bond, so LiAlH_{4} is the stronger reducing agent.
D. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is less than the polarity of the Al-H bond, so LiAlH_{4} is the weaker reducing agent.
1.17 At which site on the following substrate will electrophilic substitution be most likely to occur, in the formation of a tri-substituted product?

A. A
B. B
C. C
D. D
1.18 Which reaction can accomplish the following transformation in good yield:

A. $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$
B. oxymercuration /oxidation
C. hydroboration/oxidation
D. reaction with NaOH
1.19 The reaction between 4-methyl-1-pentanol and HBr to yield 4-methyl-1-pentene is probably:
A. an SN1 reaction involving protonated alcohol as a substrate
B. an SN2 reaction involving protonated alcohol as a substrate
C. an E1 reaction involving protonated alcohol as a substrate
D. an E2 reaction involving protonated alcohol as a substrate
1.20 The final product D, in the following reaction sequence would be?

A.

B.

C.

D.

1.21 Rank the following acids in decreasing (strongest to weakest) order of acidity.

I

II

III

IV
A. I $>$ III $>$ IV $>$ II
B. II $>$ IV $>$ III $>$ I
C. II $>$ III $>$ I $>$ IV
D. I $>$ IV $>$ II $>$ III
E. II $>$ IV $>$ I $>$ III
1.22 What is the first step in nucleophilic addition to a carbonyl compound under acidic conditions?
A. protonation of the nucleophile
B. addition of the nucleophile
C. protonation of the carbonyl carbon
D. protonation of the carbonyl oxygen
1.23 What is the correct IUPAC name for the following compound?

A. 2,6,6-trimethylbenzaldehyde
B. 1,1,3-trimethylbenzaldehyde
C. 2,6,6-trimethyl-1,3-cyclohexadienecarbaldehyde
D. 1,1,3-trimethyl-2,4-cyclohexadienecarbaldehyde
1.24 Predict the product for the following reaction.

A. 3-methyl-2-pentanone
B. 3-methyl-1-propanol
C. 2-methyl-1-butanol
D. 3-methyl-2-pentanol
1.25 Which of the following will allow the reaction below to proceed as written?

A. Addition of heat
B. Addition of an acid catalyst
C. Addition of a base catalyst
D. Addition of heat and an acid catalyst

QUESTION 2

Identify the lettered intermediates $(A-H)$ in the following reaction sequence.
Note: 2 marks for each intermediate

QUESTION 3

Draw a full detailed mechanism for the reaction below. In order to receive full marks, show all intermediates and flow of electrons using the appropriate arrows.

Note: 1 mark for each appropriate arrow

5,5-dimethoxy-2-pentanone

Y

QUESTION 4

Use the ${ }^{1} \mathrm{H}$ NMR spectrum provided below to identify the structure of compound Y with Molecular Formula $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$. Compound Y shows a strong absorption in its IR spectrum at $1713 \mathrm{~cm}^{-1}$.

THE END
GOODLUCK

${ }^{1} \mathrm{H}$ NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
	0.9-2		4.5-6
- RCH_{3} - $\mathrm{R}_{2} \mathrm{CH}_{2}$ - $\mathrm{R}_{3} \mathrm{CH}$	$\begin{aligned} & \sim 0.9 \\ & \sim 1.3 \\ & \sim 1.7 \end{aligned}$		6.5-8
	1.5-2.5		9-10
$-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	~2.5		10-12
$\mathrm{Z}=\mathrm{N}, \mathrm{O}, \mathrm{X}$	2.5-4	$\mathrm{RO}-\mathrm{H}$ or	1-5

Important IR Absorptions

Bond type	Approximate $\overline{\mathrm{V}}\left(\mathrm{cm}^{-1}\right)$	Intensity
$\mathrm{O}-\mathrm{H}$	3600-3200	strong, broad
$\mathrm{N}-\mathrm{H}$	3500-3200	medium
$\mathrm{C}-\mathrm{H}$	~3000	
- $\mathrm{C}_{s \mathrm{sp}^{3}-\mathrm{H}}$	3000-2850	strong
- $\mathrm{C}_{s p^{2}-\mathrm{H}}$	3150-3000	medium
- $\mathrm{C}_{\text {sp }}-\mathrm{H}$	3300	medium
$C \equiv C$	2250	medium
$\mathrm{C} \equiv \mathrm{N}$	2250	medium
$\mathrm{C}=0$	1800-1650 (often ~1700)	strong
$\mathrm{C}=\mathrm{C}$	1650	medium
	1600, 1500	medium

$\stackrel{\text { nipam }}{\substack{\text { Hem }}}$																		
${ }^{3}$	${ }^{\text {maxma }}$													${ }_{\text {cose }}$	mims	${ }_{0}$	F	
															N	0	F	${ }^{\text {Nexit }}$
Na	Mg												${ }^{\text {A }}$	${ }^{\text {Sid }}$	P	${ }^{\text {210 }}$	${ }^{\text {che }}$	Ar
K	coick				$\stackrel{2}{23}$	24	${ }^{25}$		${ }^{27}$	${ }^{123}$	20	\％		32	${ }^{23}$	34	35	
K	${ }_{\text {ca }}^{\text {caic }}$		$\mathrm{Sc}_{4 \times \mathrm{cm}}$	${ }_{\text {atime }}$	v	Cr	Mn	Fe	Co	Ni	C	Zn	Ga	Ge	As	Se	Br	K
			${ }^{30}$		N	212	${ }^{3}$	${ }^{\text {a }}$		${ }^{\text {ati }}$	${ }^{47}$		${ }^{3}$	5	${ }^{51}$	${ }^{42}$	${ }^{3}$	${ }_{\text {m }}^{4}$
Rb	Sr		Y	Zr	Nb	Mo	Tc	R	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	$\mathrm{X}^{\text {e }}$
cess	${ }^{\text {a }}$					${ }^{14}$	${ }^{7}$		${ }^{7}$	${ }^{78}$	碛			${ }^{\text {B2 }}$	${ }^{8}$	\％	${ }^{3}$	
Cs	Ba	＊	Lu		Ta	W	Re	${ }^{\text {O }}$	Ir	$\mathrm{Pt}^{\text {Ptemen }}$	Au	$\mathrm{Hg}^{\text {gmg }}$	TI	${ }_{\text {Pb }}$	${ }_{\substack{\text { Biad } \\ \text { cos }}}$	Po	A	R
			r						边	\％	\％							
Fr	Ra	＊＊	Lr	Rf	Db	Sg	Bh	H	Mit	Uun	Uu	UUub		Uuo				

＊Lanthanide series	${ }_{\text {La }}$		${ }_{\text {Pr }}$	Nd		m	Sm	Eu	Gd		Tb	Dy	Ho		Er	T		号
＊＊Actinde series	${ }^{\text {a }}$		号				边		\％									
	Ac	Th	Pa	4		Np	Pu	Am	Cn		Bk	Cf	Es	S	m	，		o

